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ABSTRACT: Two of the most commonly used methods, the Trapezoidal Rute and the
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1. Introduction

This paper is concerned with the numerical integration of differential systems,

x = f( x),

(L1
by linear multistep and one-leg methads. On a uniform grid 1, = nh, n =0, 1, ..., h > 0, a
linear multistep (MS) method of step number &,
k A
Z XXy =h 2 Bty ) Xny)) = 0.
=0 =0

(1.2)

is defined by a set of constant coefficients {a,, BI}, J =0, ... k. Throughout this paper it will
be assumed that (1.2) is normalized by the constraint

k
2 ﬂl- = 1. (1.3)
=0
3 A
Using the familiar polynomials p(¢) = Enn,(’ and o({) = }Z)ﬁlf-’. and the shift operator
: 1= =1
E defined by x,, . | = Ex,. the method (1.2) can be writtcn in the form

p(E).x"-hn(E)f(l", x,) =0,

(1.4)
with the normalization

o(E)l = 1.

(.5
n
On a variable grid fry. 0, =, + Th,n=1.2 .1 all or some of the coefficicnis a.. B
v=1] i
normally depend on .

?
For practical purposes, the MS-mcthod in the variable step case is
often written as

K k
2 a/,nxmu—hn-}k 2 B_/,n.f(’n+j‘ ‘\’H+/) =0
=0 =0

(1.6)
with the normalization

k
S Ba=1. (.7
1=0
Equivalently it can be expressed in the form

pn"n—hntlﬂnf('n‘ "n) = ()

(1.X)

PR




and the normalization as

a,) =0, (1.9)

where the operators p, and o, are defined by

k A
"IIXH = E (Y,'"»\'"+’. nn""l = E “; u‘ll&," (ll(”

3=0 1=t
For theotetical derivations it is preferable to write the MS-mcthod in terms of a step other

than the forward-most step. =L, 4 ~ty 4k _y s is done in parts of this paper.

n4k
With every MS-method one can associate its one-leg (OL) “twin® or counterpart

which, for variable steps, is defined by

[ i T VAC MR P R (L1

and results from the MS-method (1.8) by permuting [ with the operator a,. Of.-methods
were first introduced in [5] for theoretical purposes but were found to be useful as integration
methods in their own right [19].

QOur aim in this paper is to look for methods with very strong stability properties.

More specifically, we seck

methods which produce bounded solutions whenever applied to the test equation

X = A(r)v, ReA(r) €0 (1.12)
using any step sequence (4,1,

Asking for stability with arbitrary step sequenges may seem to be too strong a requirement.
However, we show that there do cxist methods having this property and thus the above
requirement is reasonable. For other methods stability results can be proved but only under
rather complicated assumptions on the interplay between the time dependence of the probiem
and the step changes, |13, 20].

It was demonstrated in |19] that, if formulas are implemented in the multistep form,
then unfavorable combinations of variable steps and variable coeflicients in the cquations can
lead to instability. As a simple example of this, consider the Trapezoidal Rule:

Xyt =Xy = -;—h“,(f(:". X))+ [, 6, ),




which when applied to (1.12) gives

-1
Xnsl = “ + ‘%hrwl'\(’n)]“_'%'hnq»lk('nﬂ)' Xp-

Let ha, = 1 and hypmey =4 and choose A(r) such that Alry,) = —1 and Alr,, ) = 0.

~

Then, x,, = (=2)"x,. i.e. the Trapezoidal Rule is unstable. The Implicit Midpoint Rule

(one-leg "twin" of the Trapezoidal Rule),

".n+l—"n = hn+lf(%('n + ’rwl)' ("An + xn+l”‘

td|—

on the other hand gives

-1
X, =11+ —;-h"”/\(%({,, + t,,”))ul—»%h,ﬂ,A(»%—(l,, +1, .0 x,

so that for all problems (1.12) we have |x, | <fv,|.

Recall that. for constant steps, lincar multistep methods and one-leg methods have
similar stability propertics [6] but. as stated before, with variahle steps this is no Jonger the
case. Thus, although we sometimes write formulas in multistep form it should be understood
that they are to he implemented in one-leg form.

For constant steps and constant A's, our stability requirement reduces to 4-stability.
Therefore. the order of the methods we are looking for cannot exceed two and it is natural to
restrict our attention to two-step methods. Observe that, for every given step ratio r, there
exists a two-parameter family of two-step second-order formulas. To start with, consider
formulas of this class whose coefficients depend smoothly on r. Choosing geometric step

sequences and related time-dependent problems we show, by expanding around r = 1. that

there cxists at most a onc-parameter family of constant-step formulas which can
smoothly be extended to variable steps in such a way as to satisfy our statnlity

requirement.

This result is demonstrated in Section § and was first given in [20]. The one-parameter family
of constant-step formulas in question happens to be exactly to scet of those second-order
two-step methods which are 4-contractive in the max-norm. which in turn is the same as the
set of methods which are A-contractive in a monotone inner product porm (i e, (s-stable with

diagonal G).

~w -




Let us recall this terminology.  With any solution {x, | of the difference equation we
associate the sequence X} where X = (v, | v, .2 - . t,) We say that a method is

stable at ¢ = hA if it produces bounded selutions when applicd (o the test cquation

X = Ay, AeC iy

it is said 10 be contractive sl ¢ = hXA with respect 1o a given norm Ko if BN, (0 <IN, |,
[18]. The sct of stable ¢'s is called the stability region § of the method and, simitarly, the
contractivity region ('u A iv the set of ¢'s at which the method is contractive  The method is
called A-stable (A-contractive w.r.t. a given norm) if the left half-plane is contained in
S Wel ). and A,,-stability (4,-contractive) if the negative real axis is contained in S((‘“ )
For every A-stable method there cxists an inner product norm in which the method s
A-contractive, [K]. Note that when a onc-leg method is applicd to (1 12), then
l.\'"*l P < X, 1 follows for all n and for any A(¢} as loag as MAU")}C(‘“ N

Contractivity in the max-norm was [irst investigated in [14] for Adams- and Runge-
Kutta methods  In {1, 2] contractivity in cestain polygonal norms was studied to praduce
variable-step stability results for backward differentiation methods Contractivity for dissipa-
tive nopnlincar systems in inner product norms (G-stabality) was introduced i §S.6] and further
analyzed in [7)-111] 1ES]-119). Contractivity results for Runge-Kuatta methods are given in
{3,4.12].

As mentioned above, the stability analysis using geometric step sequences fed to
constanr-step methods which are 4 contractive in the max-norm and in 2 monotone inner
product norm. It is therefore nstural to also ook for variable-step {ormulas which are

A-contractive in these norms. It turns out that
for any step ratio 7, there exists a one-parameter famify of {-contractive methods.

Hence we have now a) characterized the set of constant-step formulas for which variable step
stability results might exist, and b) given extensions of all of these formulas to variahle steps
which actually do preserve stability. We get the same methods using either the max-norm or
diagonal G-matrices. However, the G-matrix depends on the formula parameter and for every
parameter value (i.c. any fixed-step formula in the family) we find a unique variable-step
extension which is A-contractive in the same G-norm as the constant-step formula in guestion.
Obscrve that, with this extension, all results concerning crror bounds for nonlincar systems

carry over immediately.  The max-norm, on the other hand. does not depend on the method,

.y w ¢

- mn




and therefore stability is preserved even if we pick an arbitrary A-contractive v:\rin.hlc-stcp
method at every step. The max-norm results were first given in {20} and arc presented in
Section 3. while the results using the G-stability approach were given in (10}, and are
presented in Section 2.

In Section 4 we analyze A,-contractivity for variable steps and give variable-step
extensions for all constant-step formulas which arc A4,-contractive in the max-norm. We also
briefly discuss the selection of particular methods from among the one-parameter family of
A-contractive mcthods. Finally, we rewrite all methods in a practical parametrization and list

their error constants.




2. A-contractivity in the G-norm

Consider the general variable-step k-step formula

A o
Zn/vx“_,=h"z[l/,x“, 2.0

=0 =0

with the normalization

k
S8 =1 (2.2)

=0
For k 2 2, the cocfficients a,, B, depend on the step ratios

Fuay = Py gy ote = 20 kL 2.9

where h, = t,~1, _,, although for simplicity in writing they are not subscripted here. and E" is
some homogencous function of the first degree of the &, ./ = 1. ....k. The formula (2.1)

can be written using the difference operators

L . el . B
nx, = 2"/“"+r'”" = Eﬂ R PN (2.4)

n !
j=0 7=t

where p = p,, 0 = o,. In terms of these operators, (2.1) becomes
px, = h,ox,. (2.5)
Two possible implementations of (2.5), as applied to

X =f{, x). (2.6)

are the familiar lincar multistep method
pX" = i’n"-ﬂ’n- "ry) (27)
on the one hand and the one-leg method [5.6]

px, = hfot1,, ax,) (2.8)

on the other hand. Necessary and sufficient conditions for the onc-leg method to be of order

o - v




of accuracy p were given in [10] in terms of the moments

k A
M) =3 ar, M) =3 ., vr=01 .. (2.9)
1=} =0

. - . . . R
where £, =1, + 1h,, j=0, .. k and 1, is some reference point. The method (2.8) is of

order p iff, in addition to the familiar lincar constraints

M (p) =M ado v = 0.1, ...p (2.10

for pt order accuracy of the multistep method (2.7), the nonlinear conditions

M= (Ml =g 210

i

0 and 1 represents the consistency conditions

are satisfied. Forp =1, (2.10) for »v =

A
o) = Eu,:—-ﬂ.
j::ﬂ
(2.1
A A
Za,1,=n(l)= Eﬁlz 1.
=0 J=0

the second of which coincides with (2.11) for ¢ = 1 in this case. Also, for ¢ = 2, (2.11) is an

identity and thus the condition

>

A
A\ N
a =23 BT, (2120
( =0

g\

!

L

added to (2.12) guarantees second-order accuracy for both (2.7 and (2.R)
n

Consider now the general two-step formula, e

1, =1, =0, and with 7y = 1y .. 7, = 75, deflined by

hrul =l == = Tol,.
(214
"n¢2=rn¢2_’n+l =1k,

(2.1) for A =2 with 1, = 1,,,.




In this case the consistency conditions (2.12) become

pl)Y=a 4 ay +a,=0,

(215
aptg+aary=|
In addition, the constraint
, R R .
p (1) = o= a(l) (2106}

yex)

is being imposed for the purpose of pinning down A,y and «. (see (2.24) hereafter).
Relation (2160} is reminiscent of the first-order consistency condition (2.12b) but is equivalent

to that condition only in the case of cqual stepse e when Ay =h, -~ =10 =4 and

+
—Tg= 1= 1.

From (2.15) and (2.16) it f(ollows that a(d) p(¢) = o) r2)~ 22 for o o=

|
2
(£ 4+ D/ (== (re as ¢ == 1), here r{zY c= (- D) oL 2 o= (2= 1V o(0(2)), and

$(z) = (2 + 1) (z2—1). Hencee there exist quantities a, b, and ¢ such that

az + h -
25N ol =2 4+ (217
N
and

ar=ler D L A= ek raeon

2 b . 2 4 .
p = ! ) 2N
ay=—c Ay= 2 (1=h), (2.18)

n(‘,='% ((_l) . ﬁu"—"ill‘*h—(d-#('”

By (2.12), (2.13) and (2.18) the first- and sccond-otder accuracy constraints can be rewnitten

as

{c+ D1y + (c=1r, =2, (219

(c + l)r§ + ((-—l)v,z, =(14+ M0+ 1) 4 e+ =) (2.2

e i e e

. 4




The variability of the step size can be represented by the parameter

a =1y + 1,)/2 (2.21)
which vanishes for cqual steps. From (2.19) and (2.21) we get

T3=79 = 2{1—a). (

tJ
[ ]
to
—

The second-order accuracy condition (2.20), which is equivalent to
cl(ry + 1(,)2 + (72~T(,)2] + 2015 + 1) 13— 70) = 201 4 PY(1y + 1) + 2(a + c)ry—1),
can thus be rewritten as
A3 /¢y + 401=a)] + 8(1—m)afc = 4(1 + hja/c + 4a + )(1—a),
or
(a—a’)(1=c?) = ba + ac(l—a).

For a = 0 (equal steps) and ¢#0), this last condition reduces 1o v = 0, and for a(l—a)£0 it

can be written in the form

ac bt (2.2
a l—a
From (2.14), (2.21) and (2.22) it follows that \
Ta = |—a 4 —:L
—rg = l—a= 2, (2.24)
hn = hn+2/72 = hn#|/(—-1))'

The formal algebraic condition for A-stability,

Re p($)/o($)Y >0 for ¢ 2 1.

is equivalent to

. g1

Re r(2)/4(2) 2 0 Jor Rez > 0,

ie. that r(z)/s(z) be a positive function [9]; here r(2) = 22 + ) and  s(2) =




10

2z 4 )+ az + b From (2.17) it follows that this condition is satisfied 1ff

a2, b20 ¢c20 (2.25)

An interpretation of the condition (2.25) as an actual (not just formal) stability result is given
in Scction 5 hereafter. It is useful in the following to carry out the investigation of
A-contractivity subject to this constraint.

To analyze A-contractivity of (2.1) in the (-porm, recall |7] that the determination of

a G-matrix is related to decompositions of the form

-
<

= 3 3
Re %r(:)s(z) =(lmz+mt™ + ngdx + 1]+ 1y o] (2.20)
where x = Rez, my > O, ny > 0, and ¢, ¢ arc linear functions. In fact,
- T
G=PGP. (2.27)
where
2
A my+ongomym, -1 1
G = T Y
mymg, mj [

A
Note that G is positive definitc. In homogenous coordinates P corresponds to the Mocebius

transform z = ({ + 1)/({=1). Put for brevity,

A } 4 RBia
& 1 Ri2
212 Ex
We may write (2.26) in the form
Re %r(z);(—z—; = (1.5 2’)(%6 + T (2.2%)

where H is a positive semi-definite matrix, the clements of which are determined by the

polynomials ¢ . ¥,

0 Ry B2 hyy by O

G= )g, 28, 82 c H= Lh, hyy, 0] 20

812 &2 0 0 0 0

re—— -

atie,

i il

P

e ey




One decomposition of the form (2.26) is casily found, namely

Rel%r(:)mlskel(: + MG+ D +az+ b=+ (‘I: + (ac + M) + aI:I: + he.

In this special case we obtain,

, he 00
A c"+ac+b ¢
Ggpu.= | . H‘P“ = 0 a0
¢
O 00

We are interested in all possible decompositions of the form (2.26) or, equivalently, (2.28). Tt

follows from (2.28) and the form of G and I that hiyogyy + 2hysy; et are the same for

all such decompositions. Hence,

R
hyy=be gl = 8 =1, haa = a. 202 =" +ac + h—g,

A
In addition to this, we have the positivity conditions for ¢ and /{. Put for brevity g = ¢

Then

A £ N
G = R A (2.2
¢
and
s ) 2
whe > hi: = —1v((‘ + ac + b-y). (2.30)

A
The matrix ¢ associated with ¢ of (2.29) is

14+g-2¢ -z
G = : (23h
l-g b4 ¢+ 2¢
- . . p
it is subject to the constraints g > ¢ and (2.30).

Global A-contractivity (and thus 4-stabilitv) results are obtained. for all solutions of
monotone nonlincar systems [6] generated by vartable-step one-leg methods of type (2.8), if
for all n 2 0 the formula (2.1) is A-contractive in a G-norm with a ¢ which is independent of n
(i.e. of the step ratio). For G of (2.31) to be independent of n, ¢ and ¢ must be constant,
" The latter means that the difference operator p defined by (2.4) is constant with respeet 1o g,
From this point on the analysis will be restricted to sccond-order formulas, fe.

formulas for which (2.23) holds.  Since in this case @ — 0 if a — 0, (2.36G) implics that

by

e




12

g—rz-b(()) = () and that

2 12
bla) + ala)e—g + ¢ = Otlata)] ). n — 0

Hence h(a) is continuous at a = 0. From (2.23) it follows that

BO) = L —c"—c lim (a/a)

)
i.e. lim (a/a) exists. Since a > 0 for |a| << 1 hecause of the .4-stability requirements, it
a=—e
follows that lim (a/a) = 0 (since the right limit is > 0 and the left limit is € 0). Hence

a—»()
b(0) = =2, £ = 1, and the only possible choice for G is

[—c¢ 0
G =2 0 <<l (2.32)
0 | +¢
a diagonal matrix.
If in (2.30) one lets g = 1 and uses the second-order accuracy condition (2.23) to

express ac in terms of b, a, and ! then, in this case, (2.30) becomes

-

—“'—n’('—f:)—‘i—'lr--l" 20 (2.33)

-0

Therefore, the only second-order methods which are A-contractive in a fixed G-norm for

arbitrary step ratios are defined by

a{a) =(1=c)a/e,
bla) =(1=c(1-a)k, (2.34)

cla) =c=const, 0 < c <.

Another way of arriving at the onc-parameter class of methods (2.34) is to obscrve [10] that
for any.fixed ¢ the equation (2.23) defines a one-parameter family of straight lines in the

planc with cartesian coordinates (ac, b). The envelope of this family is given by (2.34). As

mentioncd above, in order to have a G-norm independent of n, the difference operator p must

be fixed.




3. A-contractivity in the /_-norm

In the preceding scction it was shown that the class of all second-order two-step
formulas with variablc steps which are 4-contractive in the G-norm is defined by (2.34). Here
it will be proved that this same class also represents all variable-step p = A = 2 formuias
which are A-contractive in the /_—norm. However, as will be scen. the requirement that the
operator p be constant with respect to n which had lo.hc impaosed in analyzing A-contractivity
in the G-norm may be dropped in studying the same property in the £ —norm.

Let h™ i= Ay, =ty =ty h* 1= b s = 1,,3=1,,;. and h := %(h* + k7). Then

one has A% = h(1 + ¢) and h~ = h(1=¢). where ¢ = (h*—h')/Zh. -l <e< +1: 1e
¢ = 0 for equal steps (k™ = h*). For bounded step ratios, one has the following expressions

for the first and second central divided differences of any sufficiently smooth function x(7):

dx(r 2 . 2
o )) e e LR SR (A R I R R B R AR R R R UL
o 7 _, 201—¢2)h

LX)
30N
62x(l) 1 . .
— tm e (L )X ) =200, ) H =t D =, )+ 00h).

s oL (=’

If unsubscripted quantities are assigned to ¢ then one can write a normalized ansatz for a

n+l

two-step formula in divided difference form:

tJ

LY M Si :‘52.{
Y _nf x s N Gh O = 0
3 l(\+\|xm+\‘v ﬁ) ( (

8

LK

~
to
-

uyv 4 u‘h;'—: + ush

In order for (3.2) to be consistent (of order of accuracy p = 1) it must be satisfied exactly for
x(r)=1 and x(r) = . This is the case iff u, =0 and v, = 1. The class of all consistent
formulas can thus be written in terms of the three parameters v = u,y, v = v, and w = v, as

follows:

-
.

WS S ) <0 (33)
St 5t 61

&

The p = 2 accuracy condition, gotten from substituting x(r) = ¥ into {3.3), is simply

N o=y (1 4)

If from (3.1) one substitutes for the divided differences and groups terms one finds the

v e




following expressions for the formula cocfficients

n"-_-y——ﬁ, /f“=gﬂ—-\.',
a, = -2y, By=1-2s, (35)
4':27+5. /lx-‘(‘&#k’_
where
~2¢42u ) l+r:—2tu
Yy .= .= 2-«‘ hj: .- g
21-¢%) 200 =¢%)
(3 0)
. —2rv 42w , H-H:!\‘--le
@I e yoOIE e e
2(1—¢7) 201—¢7)
Two identities are implied by these definitions:
1~2ey =28,
(37
l(.‘y+y' = l\’
2

Note that the normalization is again (22).1e. £ f8, = 1
=0

The class of formulas defined by (3.5) and (3.6) is the same as that defined in terms
of the parameters a, b, ¢ by (2.18).  The transformation (w, v, w)—s(u. b, ) and that of

related quantities can he found by requiring that o, =a, and p, . h=p,  h where

h = 71". One obtains the relations

a = 4y-c = 4y—-(y/8H),

b = 4¢p-1,

c = y/6,

a = 2ey = 1-286, (1R)
h = h/28.

1 = 2(1 4+ 0)A,
~tg= 21-e)8,

In the present parametrization, r(z) = 4(8z + y) and s(2) = PR dyr + (da~-1)r By

applying the result of Example 2. p.13 of [9] to s(z)/r(2) one finds the formal 4-stability

— -
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conditions

A >0,

¢ 2 . (39

0 <y < 46y

It was proved in [18] that a multistep formula v 4,,-contractive 1n the max norm

(f_—norm) iff

a, >0 u’SU.}‘—-('. k-1,

(i
[
f-S iz o
1=y
A formula is 4-contractive in the max norm iff hath (3 10) and
PO |
ER,(n)SI.USu<+r. (31N
y=0
are satisfied, where
3 N L - [N
Rin)=[lar + fin)ita; + im] =0, A=t (1

and where the square roots are positive by definition. For A = 2 it s feasible to reduce (3 11)
to a condition  just involving  the Tormula cocflicients In fact. R+ R, <1 a=p
2R,R | < I-R(‘p ‘, > JR,:,R“; < (|——R(:,—-R“;):. the dast meguality being rational The
latter is in turn equivalent to a condition of the form p, + pon 4 /v:n: 20,702 0, whieh
o = 0 by consistency and p, > 0 by (3,10} Therefore, a two-step formula iv f-contractive

in the max norm iff both (3.10) and

2 2 2 2 2 > AN .
py o= Loy — a4 a MBS = B+ B = DR+ oY 20 (V1Y)
hold  After substitution from (3.5), a calculation gives the condition

%p| -y - 1) =d(p —82) 2 0 (A1)

which is equivalent to (3.13).  Using the notations 4 = e =t B = (=) and

.
C:= (1 4 ¢%)/2(1=¢") and the second-order accuracy condition (3.3), one has y = 4 4+ [y,

. P -
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S=C+Av, ¢d=Av+ Bw, and ¢ = (v + {n Another  caleulation  vields 63-7‘ =
%—A.--m’. d6—1 = 4Av + 4Bw—1, d(y¢—~8:)" = [BOe=vD] . and thus (3.14) finally

takes the form

%P. = '"::I(|-4,Al\')—2n(w + .-"n]‘ >0
This last condition is satisficd iff w = (2B) : ~-{(24 /B)r—rz, e ff

\ -

N N N o0
W= 5 4+ 2tv—yt = i —~ (=) (3.154)

-

As will be shown in the next section, (3 10) implies that of the parabola (3 154) only the are

defined by
-l < a1, (3 15h)

corresponds to d-contractive methods. 1t can be verified, by using the (ransformation (3.8),
that the class of second-order formulas defined by (2.34) is the same as that defined by (3.3),
(3.4) and (3.15).

Remark:  The use of the / -porm is natural since it is the only norm in which all of
the formulas defined by the interval (21Sh), including s endpoints  the Trapeszoidal Ruole
(v = (1 4+ ¢)/2) and the two-step Trapezoidal Rule (v = ¢), are simultancously 4-contractive

([20], Proposition 2.4),

' cvoar e

' ey -

¢ v .




4. Ag-contractivity and summary of methods

It was proved in [ 18] that, in the /_—norm, the formula (2.1) is a) contractive at g =

0 iff '

a, €0, j=0, ., k=1, a, >0, 4.1

b) contractive at ¢ = = iff
A A1
Y =K/-2 18120 (4.2)
=0
and c) A,-contractive iff both (4.1) and (4.2) hold (as stated carlicr).  For the class of

formulas with p = k = 2 defined by (3.4)-(3.6). a5 < 0 and a; < 0 vicld

1+ ¢
- 2 .

(4.}

The condition a, > 0, which is equivalent to v >—(1-¢)/2, is implicd by (4.3). In discussing

(4.2) one distinguishes four cases depending on the signs of i, and B, First note that B,2 0
<

iff
ERLE AL (44)
< 2
and B,2 0 iff '
<
“-S .!_-—.£:+'| (4 i)
> 2

Case I: For iy, 2 0 and B, > Oonc has Y = B,—Ry—f, = 2(& + ¢)= 1 > 0iff

w > -!-t—f- S Sl (4.6)
2 2
Case 2: Forfi,<Oand B, 2 0.y = B, + By—f, = 4612 0ilf
w > 1= 4 en (4™
4

But (4.7) and (4.4) require that )
, 4
Izl e 1, .

ettt e
s




which implies v > (1 + ¢)/2. Lhis latter condition is incompatible with (4 1), vo that Case 2
does contribute any feasible points 1o the region of 4,-contractivity in the parameter planc.
. - A

Case 3. For iy <0and By, 2 0y = fa—fy+ ) = 24~d) + 120, 1e

v+ (4.8)

Case 4. For B < G and B, < 0, an argument similar to that of Case 2 shows that there are
no dy-contractive methods of this type  The region of A -contractivity in the plane of the
parameters (w, v) is the shaded triangle shown in Figure 1 for increasing steps (¢ = %) and in
Figure 2 (or decreasing steps (¢ = - :) The tine fi; = 0 divides this lri:mglc‘in(o two
subtnangles, the Jeft hand one TP"Y(‘St'l;lC the contributbion from Case |, the right hand one
that from Case 3. The upper left and lower vertices of the A, -contractivity triangles represent
(identically in ). the Trapezoidai Rule (TR), defined by o, = 8, =0 and the two-step
Trapezoidal Rule (2TR), having ap = f; = 0. The set of all second-order A-contractive
methods (both in the G-norm and in the /_—norm), defined by (2 33) respectively by the
equivalent relations (3.15), is represented by arcs of parabolas in Figures 1 and 2, joining TR
and 2TR.

One may ask whether it i possible to sclect a particular formula from among the
Ay-contractive or the A-contractive ones whose truncation error is in some sense minimal?  Of
course, there is no unique way ol making such a choice. Il the problem is smooth and no
dissipation is required, the TR (rep. its one-leg counterpart, the Iinplicit Midpeint Rule) or a
method “close” 10 it may be the tight choice, while for rough problems one needs a considera-
ble amount of dissipation which one can provide by ashing for strong contractivity at g = .
In [19] a compromise choice of an 4,-contractive formula was made by minimizing, over all
Ag-contractive formulas with p = &k = 2, a bound for the global truncation crror produced if
an A(0)-contractive formula is implemented as & one-leg method and applicd to the test
problem x = A(f)x, A(r) €—a. a > 0. The calculation was restricted to fixed integration

steps. 1t resulted in finding an A-contractive tindeed, A(a)-contractive) formula of Adams

type,

v X

x. 1.
ne? B tnar 4 pvd =0 (4.9

which in {19] was referred to as CA2 A unigue genaeralization of (4.9 to arbitrary vanable

steps was then defined by requiring that the variable-step version represent a second-order

. - -
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accurate Hermite interpolation formula of the same form as (4.9), re. with o, = i, = 0, and
it was proved that the variable-step version defined in this manner, when implemented as a
onc-leg method, remained Ag-contractive (in the max norm) for any A(r) € 0 and for any step
sequence {h, } whatsoever. For a given k the objective function, whose minimization over the
two-parameter sct of alkl Al(,-comraclive formulas led to (4.9), was | ;| /; here ¢y is the crror
constant and ? = BA—;()IﬁII is the contractivity constant considered in (3.10) and (4.2).
both of which are funcl]ions of the parameters. It can be shown - although it was not stated in
[19] - that formally minimizing | ¢, | /Iy\ over all dy-contractive formulas in the variable step
case defines the same gencralization of (4.9) as does the Hermite interpolation requirement
mentioned before.  The variable step version of (4.9) is defined by (4.19) hereafter in the
form given in [19] which is practical for numerical computation. It is represented in Figures |
and 2 by the point labeled OPA,, (for "optimal” 4y-contractive method), the intersection of
the lines a, = f§, = 0.

The transformation

U+ (1+6 () —e21(0) ]
w(e) = SRR
(1—€) 426 20w(0) — v(M)]

(4.10)

We) = t-ol2 WU))t_(!_—_-»gf]}'(._(l‘_l_‘
(L=e)+2:02w(0) - (M}

maps the triangle representing the Ajy-contractive formulas for ¢ = 0 one-to-one onto the
corresponding triangle for any e#0. The lines o, = fi, = B, = 0 arc invariants ol this
transformation and thus the fixed- and variable-step versions of OPA4, and of the backward
differentiation formula (BDF) correspond to one another.

We derived a particular 4-contractive p = k = 2 formula for arbitrary step ratio which
minimizes the objcctive function |(~}|/¢ mentioned i the preceding paragraph. The crror

constant for the p = k = 2 formula associated with (v, w) turns out to be

oy = %[(l—-rz) + dev—bw]: 4.1

] B
on the class (3.15) once finds that |e,| = ~;|‘~|(I + 1) 4+ 4'r—3\-‘|. A calculation shows
that [ ¢3(¥) | /7(¥) takes its global minimum at

Vope = (1 + SREFTN (4.122)

which is an interior point of the interval defined by (3.15h) for all ¢.~1 < ¢ < 1. The value

e e




of w, corresponding to v

opr Vid (3. 152), is

Wy = —;—(I T+ 3+ 5 4 e B (4,120

For cqual steps (¢ = (), the particular 4-contractive formula defined by (4.12) is

| 4 S 2.
Y ‘n_>"‘n+l + 6"'1#2""( '()"n +

2. S.ooy L
6 ¢ ot t G‘n&?)—()' (4.13)

9
It is represented in Figures 1 and 2 by the points labeled OPA for ("aptimal” A-contractive
mcthod).

For practical use the family of variable-step p = & = 2 methods studied in Sections 2

“«

and 3 is rewritten hereafter, with n=2 replacing 1, in terms of the forward step A, = 1 —¢
g ” n=ly

(rather than the average step b = —%—(h" + h, ) used in Scction 3) and in terms of the step

ratior = r, =k /h, | (rather than ¢ = Ch,—h,_1/21). The relationship between r and € is

P L U -1 (414
1—¢ r+1
The class of formulas defined by (3.5) and (3.6) (or (2.18)) is equivalent to
Mgy g, asy = By, 5+ Y B =0, (4.15)
where the coefficients
2 2
r r
=-=L_(1=b) . By= - (14 hy=h),
@y 147 ! Ba 30 +0 0=
ay=—li=r(1=b)| . B, =(1--;-h,|—§u +by=b)). (4.16)
| r
ay=1-—"—(1=b)) . PBy=_b+ =" (1+by=-h)),
2 T S LA TTpY o

depend on n via the step ratio r = r, and possibly via the parameters by, b, which may also

vary with n. The parameters v and w of Scction 3 relate (o by b, as follows:

(4.17)

1420201 4 by,

W=

rop e v

ey ——

-

oy ——=mr o




The use of b, and b, is motivated by the fact that for r = 1 (cqual steps) one has

5(z2) = 0(2(§)) =by+ bz + 2% and the A-stability set in the parameter plane (b, b)) is the

first quadrant. The error constant for the general formula (4.16) is
1 ,
€y = I—27[(2--3r)—3rh0—(2—-2r)b|]. (14.18)

The variable-step version of the optimal Aj-contractive formula (4.10) labeled OPA4,, for

which by = 1/rand by = 1. is

2+r . r .
"'n—"‘n——l—hn[ 2+2r-‘" + 2+2r""’_2] =0 (4.19)

and its error constant is
Cy = - (4.20)

The constraint (3.15) (respectively (2.34)) for A-contractivity translates into

by= L= h =10,
~

"'<h,<|.
— < by <

The a-cocfficients of the A-contractive formulas are thosce of (4.16) and the B-coefficients are

“

o=t gtz
T a4y T 20140 YT 20040 !
1- 2 .
By = 2'b,+éhl. (4.2
1 2r— 1 roo2
= + b — B,
b= 1o 20047 ' 20040 "

The error constant for the A-contractive methods is

| 2

A variable-step extension of the formula OPA piven by (4.13) is defined naturally by the

relation (4.12a), i.e. by requiring that the variable-step version have the same minimality
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property as the uniform-step version. Conditton (4 120 translates into
by =2r (25 4 1), (4.24)

the formula coefficients are

3

—-— r.
ay = = N

(1411 427)°
_ 1 +r

142r.

l+2r+2r:

ay = HEE (4.25)
(14(1+27)

ril+r)
Bo= =T
(1+21)°
l+2r+2r:
fBy=

N
(142r)
and the error constant is

14 (1 ;
Q+na+ it R (4 20)
3r(l 425"

Cq

Another extension of (4.13) is given by the requirement that the variable-step version
be 4-contractive in the same G-norm as (4.13). Using the notations of Scction 3, this requires

that v = v(¢) = (1 4+ 3¢ + rz)/(.‘ + 2¢), resp.

bitry = 201 (4.27)

Recall that, when formulas are implemented in the one-leg form, the local truncation

error consists of two third-order terms. The first of these has the coefficient ¢, and comes

from the linear constraints (2.10); the second term is due to the nonlincar constraints (2.11).

Vo vy
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™
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5. On variable-step stability

As stated in the Introduction, we seek extensions of uniform-siep p = &k = 2 formulas
to arbitrary non-uniform steps whose coefficients a,. B, depend smoothly on ¢ ncar ¢ =0
(uniform steps) and which gencrate bounded discrete solutions when applied to the variable
coefficient test equation (1.12). A necessary condition for a method to have this property is

that it be stable for any geometric step sequence

A -
h,=(1+ e)” l, ¢ constant, (1)
for which the step ratio is constant:
A
r=l+rc e=r¢/(2+¢0) (5.2)

and thus the operators p and o are constant. Furthermore let A(7) be such that

- :
Aor,) = (1 + ’r\) "q. g constant, Re ¢ < O (5.3
"_ AN A ye

where, for ¢, =0, ¢, = }_Ih‘. = [(1 +¢) =1}/e. Then ¢ = A Alot,) = constant and the
=

onc-leg method generates bounded solutions iff p(§, £)/ ({0 ) satisfies

11> 1 = Relp(t, e}/ /ol )] > 0. (5.4

Thus (5.4) is a nccessary condition for the variable-step, variable-caeflicient Af-<tahilin
property studied here. This condition is satisficd iff (3.9) holds.  Assume that the cocfficients

are smooth enough in ¢ so that we can write 6(e) = ——¢r(0) + ()(;:). Then Ste) > 0 s

1
2
obviously satisficd. Furthermore, for arbitrary e, y(e) 2 Oilf v(¢) 2 ¢, part of the condition
(4.1) for contractivity at ¢ = 0. Also, for Je| << I, ¢(e) = w(O)—ev(O) + OGSy and
¢(e) 2 % is equivalent to (4.7). one of the constraints for contractivity at ¢ = ». Fnally, the
condition y(r) € 48(e)y(e) bLecomes —e + v(0) < v(0)~26¥2(0) = 2ew(0) + OLe™) or, 1o

O(e), ~¢ <—26v3(0)=2ew(0) which is true for any e, | e| << 1, iff

w(0) = L_v3 (5.5)

1
2

holds. Condition (5.5), together with (4.7) which for e = 0 is w(0) 2 ‘l‘ implies v({)) < -

1
.
2

and y(0) > 0 requires v(0) > 0. Thus altogether, for | r] << 1 the necessary condition (S 4

o - -



for A-stability is satisfied iff both (5.5) and

0< vy < L (5 0))
2
hold which for ¢ = 0 arc cquivalent to (3.15a), and (3.15b), respectively, defining the
A-contractive formulas.
For arbitrary ¢ # 0, the formal algebraic A-stabidlity conditions (3.9) vield the

constraints derived hereafter. The conditions 8 > 0,0 > 1.4, and y > 0 yvield

R (5 7)
> 2r <
2
w > 2700 4 (S.R)
4
and
v 2>, (s™

respectively. For any ¢, the constraint y € 4= takes the form eb (v, w, ¢) > 0. where

<

S w, ) 1= 2[2ev—(1 + eDw=201 4 ¢ + e(3 4 v+ (1=e') (510)
It is satisfied iff ©(v, w, ¢) 2 0, ¢> 0. The equality ®(v, w, r) = 0 can be written in the
S e

form
W= (200 + e me(3 4+ evm(l—e Y[ 202ev=(0 + D1 (5.11)

a hyperbola whose center lies at w = (2 4+ ¢l + r‘)/thz, v= (1 + 52)/2r and whose two
asymptotes are v = (1 + ¢)/2¢ and w = [+ e2)/2elv + [(1=¢%)/4 ’I. This hvperbola

passes through the points (w = ( 2;‘ )2, = ;f ) and (w e s r) represent-

-5

(SR

ing the Trapezoidal Rule (TR) and the two-step Trapezoidal Rule (2TR). respectively.

The hyperbola subdivides the (w, v)-planc into a connected set containing the minor
axis and into a disconnected set consisting of two branch sets and containing that part of the
major axis lying beyond the vertices. For € > 0, the "good" region defined by & > 0 is the
disconnected set. Because the first asymptote is the borderline case of condition (5.7). only
one of the branch scts is "allowed" by condition (5.7) and all points of that set do satisfy that
condition. Consequently, for ¢ > 0 the set of all points satisfying the formal A-stability
conditions is the (bounded) interscction of (5.8), (5.9) and & > 0. It is represented (for

e= 4+ 1/2) by thc shaded rcgion of Fig. 3 which contains the arc of all A-contractive

cnme
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methods. For comparison with the other figures, the Ag-contractivity triangle is also shown.
For ¢ < 0, the "good" region ¢ < 0 is the connected set. The constraint (5.7) is implied by
(5.9) and thus the active constraints are again the same. For ¢ = —1/2, their (unbounded)
intersection is represented by the shaded portion of Fig. 4 which again contains the
A-contractivity arc.

Figures 3 and 4 indicate that, for ¢ near zero, the arc of the A-contractive formulas
nearly coincides with the boundaries of the shaded regions for ¢ > 0, resp. ¢ < 0. Hence
assuming smoothness for ¢ near zero, only the methods along the arc are admissible, as we
concluded above. However, we have not shown that a non-smooth strategy would not work.

Note that the BDF , which for ¢ = + 1/2 is (9/8. 3/2) and for ¢ = ~1/2 is (1/8,
1/2), lies in the "stable set” only for ¢ € 0. [t was mentioned in {19] that for the test
problem defined by (1.12) and (5.1)-(5.3) with A(1) < 0, A4-stability of the BDF was lost for
r>1+ V2 (( > \/3/(2 + \/3)) Indications for instability at smaller step ratios (r 2 1.2)
were given in [1] for x = Ax, A constant, complex, in the sense that for such ratios a sufficient
condition for contractivity in a polygonal norm was violated. Here it is shown that for some

complex A{¢) (oscillatory problems) the BDF actually becomes destabilized by the problem

defined by (1.12). (5.1) - (.3 with r = 1 + ¢ for anyv £ > 0.
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